CSC 202, Winter 2008, Problem Set 3

Problem Set 3
Due: Thursday, January 31st
Please complete the following exercises in the on-line textbook:

Section 1.4: 1, 2, 3, 8, 10
Graphs

Section 1.4

· 1. Draw a picture of a graph that represents those states of the United States and those provinces of Canada that touch the Atlantic Ocean or touch states or provinces that do.

· 2. Find planar graphs with the smallest possible number of vertices that have chromatic numbers of 1, 2, 3, and 4.

· 3. What is the chromatic number of the graph representing the map of the United States? Explain your answer.

· 4. Draw a picture of the directed graph that corresponds to each of the following binary relations.

· a. {(a, a), (b, b), (c, c)}.

· b. {(a, b), (b, b), (b, c), (c, a)}.

· c. The relation≤ on the set {1, 2, 3}.

· 8. Given the algebraic expression a × (b + c) - (d / e). Draw a picture of the tree representation of this expression. Then convert the tree into a list representation of the expression.

· 10. Draw a picture of a binary search tree containing the three-letter abbreviations for the 12 months of the year in dictionary order. Make sure that your tree has the least possible depth.

· What is the largest complete graph that can be drawn as a planar graph? Recall that a complete graph is one where every pair of nodes has an edge between them. It’s easy to see that a complete graph with two nodes can be drawn with no crossing edges because it only has one edge. The complete graph on three nodes will be a triangle. But make sure you check the complete graphs on four nodes and five nodes.

· Does the complete graph on four nodes have an Euler cycle?

· Does the complete graph on five nodes have an Euler cycle?

· Finally, using as an example the call tree I presented for version 3 of the computeCombinations Java function, draw the call tree for the following Java function:

public static int fibonacci(int n) {

if (n == 1) {

return 1;

}

else if (n == 2) {

return 1;

}

else {

return fibonacci(n-1) + fibonacci(n-2);

}

}

when called with fibonacci(7).

Once the tree is drawn, at each node write the value returned by that call to the
function.

